Noninvasive in vivo imaging of monocyte trafficking to atherosclerotic lesions.

نویسندگان

  • Moritz F Kircher
  • Jan Grimm
  • Filip K Swirski
  • Peter Libby
  • Robert E Gerszten
  • Jennifer R Allport
  • Ralph Weissleder
چکیده

BACKGROUND Monocytes play a key role in atherogenesis, but their participation has been discerned largely via ex vivo analyses of atherosclerotic lesions. We sought to establish a noninvasive technique to determine monocyte trafficking to atherosclerotic lesions in live animals. METHODS AND RESULTS Using a micro-single-photon emission computed tomography small-animal imaging system and a Food and Drug Administration-approved radiotracer ([indium 111] oxyquinoline, (111)In-oxine), we demonstrate here that monocyte recruitment to atherosclerotic lesions can be visualized in a noninvasive, dynamic, and 3-dimensional fashion in live animals. We show in vivo that monocytes are recruited avidly to plaques within days of adoptive transfer. Using micro-single-photon emission computed tomography imaging as a screening tool, we were able to investigate modulatory effects on monocyte recruitment in live animals. We found that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors rapidly and substantially reduce monocyte recruitment to existing atherosclerotic lesions, as imaged here in vivo. CONCLUSIONS This novel approach to track monocytes to atherosclerotic plaques in vivo should have broad applications and create new insights into the pathogenesis of atherosclerosis and other inflammatory diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid noninvasive detection of experimental atherosclerotic lesions with novel 99mTc-labeled diadenosine tetraphosphates.

The development of a noninvasive imaging procedure for identifying atherosclerotic lesions is extremely important for the clinical management of patients with coronary artery and peripheral vascular disease. Although numerous radiopharmaceuticals have been proposed for this purpose, none has demonstrated the diagnostic accuracy required to replace invasive angiography. In this report, we used t...

متن کامل

Omega-3 fatty acids ameliorate atherosclerosis by favorably altering monocyte subsets and limiting monocyte recruitment to aortic lesions.

OBJECTIVE Fish oil, containing omega-3 fatty acids, attenuates atherosclerosis. We hypothesized that omega-3 fatty acid-enriched oils are atheroprotective through alteration of monocyte subsets and their trafficking into atherosclerotic lesions. METHODS AND RESULTS Low-density lipoprotein receptor knockout and apolipoprotein E(-/-) mice were fed diets containing 10% (calories) palm oil and 0....

متن کامل

Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques.

Some monocytes normally take up residence in tissues as sessile macrophages, but others differentiate into migratory cells resembling dendritic cells that emigrate to lymph nodes. In an in vitro model of a vessel wall, lipid mediators lysophosphatidic acid and platelet-activating factor, whose signals are implicated in promoting atherosclerosis, blocked conversion of monocytes into migratory ce...

متن کامل

New Methods in Cardiovascular Biology Nanobodies Targeting Mouse/Human VCAM1 for the Nuclear Imaging of Atherosclerotic Lesions

Rationale: A noninvasive tool allowing the detection of vulnerable atherosclerotic plaques is highly needed. By combining nanomolar affinities and fast blood clearance, nanobodies represent potential radiotracers for cardiovascular molecular imaging. Vascular cell adhesion molecule-1 (VCAM1) constitutes a relevant target for molecular imaging of atherosclerotic lesions. Objective: We aimed to g...

متن کامل

Nanobodies targeting mouse/human VCAM1 for the nuclear imaging of atherosclerotic lesions.

RATIONALE A noninvasive tool allowing the detection of vulnerable atherosclerotic plaques is highly needed. By combining nanomolar affinities and fast blood clearance, nanobodies represent potential radiotracers for cardiovascular molecular imaging. Vascular cell adhesion molecule-1 (VCAM1) constitutes a relevant target for molecular imaging of atherosclerotic lesions. OBJECTIVE We aimed to g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 117 3  شماره 

صفحات  -

تاریخ انتشار 2008